
15
Subexponential-time discrete logarithms and factoring

This chapter presents subexponential-time algorithms for computing discrete log-
arithms and for factoring integers. These algorithms share a common technique,
which makes essential use of the notion of a smooth number.

15.1 Smooth numbers
If y is a non-negative real number and m is a positive integer, then we say that m is
y-smooth if all prime divisors of m are at most y.

For 0 ≤ y ≤ x, let us define Ψ(y, x) to be the number of y-smooth integers up to
x. The following theorem gives us a lower bound on Ψ(y, x), which will be crucial
in the analysis of our discrete logarithm and factoring algorithms.

Theorem 15.1. Let y be a function of x such that

y

log x
→ ∞ and u :=

log x
log y

→ ∞

as x→ ∞. Then

Ψ(y, x) ≥ x · exp[(−1 + o(1))u log log x].

Proof. Let us write u = buc + δ, where 0 ≤ δ < 1. Let us split the primes up to y
into two sets: the set V of “very small” primes that are at most yδ/2, and the set
W of other primes that are greater than yδ/2 but at most y. To simplify matters,
let us also include the integer 1 in the set V .

By Bertrand’s postulate (Theorem 5.8), there exists a constant C > 0 such that
|W | ≥ Cy/ log y for sufficiently large y. By the assumption that y/ log x → ∞ as
x→ ∞, we also have |W | ≥ 2buc for sufficiently large x.

To derive the lower bound, we shall count those integers that can be built up by
multiplying together buc distinct elements of W , together with one element of V .

399

400 Subexponential-time discrete logarithms and factoring

These products are clearly distinct, y-smooth numbers, and each is bounded by x,
since each is at most ybucyδ = yu = x.

If S denotes the set of all of these products, then for x sufficiently large, we have

|S| =
(

|W |
buc

)

· |V |

=
|W |(|W | − 1) · · · (|W | − buc + 1)

buc!
· |V |

≥
(|W |

2u

)buc
· |V |

≥
(Cy

2u log y

)buc
· |V |

=
(Cy

2 log x

)u−δ
· |V |.

Taking logarithms, we have

log|S| ≥ (u − δ)(log y − log log x + log(C/2)) + log|V |
= log x − u log log x + (log|V | − δ log y) +

O(u + log log x). (15.1)

To prove the theorem, it suffices to show that

log|S| ≥ log x − (1 + o(1))u log log x.

Under our assumption that u → ∞, the term O(u + log log x) in (15.1) is clearly
o(u log log x), and so it will suffice to show that the term (log|V | − δ log y) is also
o(u log log x). But by Chebyshev’s theorem (Theorem 5.1), for some positive con-
stant D, we have

Dyδ/ log y ≤ |V | ≤ yδ,

and taking logarithms, and again using the fact that u→ ∞, we have

log|V | − δ log y = O(log log y) = o(u log log x). 2

15.2 An algorithm for discrete logarithms
We now present a probabilistic, subexponential-time algorithm for computing dis-
crete logarithms. The input to the algorithm is p, q, γ, α, where p and q are primes,
with q | (p − 1), γ is an element of Z∗p generating a subgroup G of Z∗p of order q,
and α ∈ G.

We shall make the simplifying assumption that q2 - (p − 1), which is equivalent
to saying that q - m := (p − 1)/q. Although not strictly necessary, this assumption

15.2 An algorithm for discrete logarithms 401

simplifies the design and analysis of the algorithm, and moreover, for cryptographic
applications, this assumption is almost always satisfied. Exercises 15.1–15.3 below
explore how this assumption may be lifted, as well as other generalizations.

At a high level, the main goal of our discrete logarithm algorithm is to find a ran-
dom representation of 1 with respect to γ and α—as discussed in Exercise 11.12,
this allows us to compute logγ α (with high probability). More precisely, our main
goal is to compute integers r and s in a probabilistic fashion, such that γrαs = 1
and [s]q is uniformly distributed over Zq. Having accomplished this, then with
probability 1 − 1/q, we shall have s 6≡ 0 (mod q), which allows us to compute
logγ α as −rs−1 mod q.

Let H be the subgroup of Z∗p of order m. Our assumption that q - m implies
that G ∩H = {1}, since the multiplicative order of any element in the intersection
must divide both q and m, and so the only possibility is that the multiplicative
order is 1. Therefore, the map ρ : G ×H → Z∗p that sends (β, δ) to βδ is injective
(Theorem 6.25), and since |Z∗p| = qm, it must be surjective as well.

We shall use this fact in the following way: if β is chosen uniformly at random
from G, and δ is chosen uniformly at random from H (and independent of β), then
βδ is uniformly distributed over Z∗p. Furthermore, since H is the image of the q-
power map on Z∗p, we may generate a random δ ∈ H simply by choosing δ̂ ∈ Z∗p
at random, and setting δ := δ̂q.

The discrete logarithm algorithm uses a “smoothness parameter” y. We will
discuss choice of y below, when we analyze the running time of the algorithm; for
now, we only assume that y < p. Let p1, . . . , pk be an enumeration of the primes
up to y. Let πi := [pi]p ∈ Z∗p for i = 1, . . . , k.

The algorithm has two stages.
In the first stage, we find relations of the form

γriαsiδi = π
ei1
1 . . .πeikk , (15.2)

for i = 1, . . . , k + 1, where ri, si, ei1, . . . , eik ∈ Z and δi ∈ H for each i.
We obtain each such relation by a randomized search, as follows: we choose

ri, si ∈ {0, . . . , q − 1} at random, as well as δ̂i ∈ Z∗p at random; we then compute
δi := δ̂

q
i , βi := γriαsi , and mi := rep(βiδi). Now, the value βi is uniformly dis-

tributed over G, while δi is uniformly distributed over H; therefore, the product
βiδi is uniformly distributed over Z∗p, and hence mi is uniformly distributed over
{1, . . . , p − 1}. Next, we simply try to factor mi by trial division, trying all the
primes p1, . . . , pk up to y. If we are lucky, we completely factor mi in this way,
obtaining a factorization

mi = p
ei1
1 · · · p

eik
k ,

402 Subexponential-time discrete logarithms and factoring

for some exponents ei1, . . . , eik, and we get the relation (15.2). If we are unlucky,
then we simply keep trying until we are lucky.

For i = 1, . . . , k+ 1, let vi := (ei1, . . . , eik) ∈ Z×k, and let vi denote the image of
vi in Z×kq (i.e., vi := ([ei1]q, . . . , [eik]q)). Since Z×kq is a vector space over the field
Zq of dimension k, the family of vectors v1, . . . , vk+1 must be linearly dependent.
The second stage of the algorithm uses Gaussian elimination over Zq (see §14.4)
to find a linear dependence among the vectors v1, . . . , vk+1, that is, to find integers
c1, . . . , ck+1 ∈ {0, . . . , q − 1}, not all zero, such that

(e1, . . . , ek) := c1v1 + · · · + ck+1vk+1 ∈ qZ×k.

Raising each equation (15.2) to the corresponding power ci, and multiplying
them all together, we obtain

γrαsδ = π
e1
1 · · ·π

ek
k ,

where

r :=
k+1
∑

i=1

ciri, s :=
k+1
∑

i=1

cisi, and δ :=
k+1
∏

i=1

δ
ci
i .

Now, δ ∈ H , and since each ej is a multiple of q, we also have π
ej
j ∈ H

for j = 1, . . . , k. It follows that γrαs ∈ H . But since γrαs ∈ G as well, and
G ∩ H = {1}, it follows that γrαs = 1. If we are lucky (and we will be with
overwhelming probability, as we discuss below), we will have s 6≡ 0 (mod q), in
which case, we can compute s′ := s−1 mod q, obtaining

α = γ−rs
′
,

and hence −rs′ mod q is the discrete logarithm of α to the base γ. If we are very
unlucky, we will have s ≡ 0 (mod q), at which point the algorithm simply quits,
reporting “failure.”

The entire algorithm, called Algorithm SEDL, is presented in Fig. 15.1.
As already argued above, if Algorithm SEDL does not output “failure,” then

its output is indeed the discrete logarithm of α to the base γ. There remain three
questions to answer:

1. What is the expected running time of Algorithm SEDL?

2. How should the smoothness parameter y be chosen so as to minimize the
expected running time?

3. What is the probability that Algorithm SEDL outputs “failure”?

Let us address these questions in turn. As for the expected running time, let
σ be the probability that a random element of {1, . . . , p − 1} is y-smooth. Then

15.2 An algorithm for discrete logarithms 403

i← 0
repeat

i← i + 1
repeat

choose ri, si ∈ {0, . . . , q − 1} at random
choose δ̂i ∈ Z∗p at random
βi ← γriαsi , δi ← δ̂

q
i , mi ← rep(βiδi)

test if mi is y-smooth (trial division)
until mi = p

ei1
1 · · · p

eik
k for some integers ei1, . . . , eik

until i = k + 1

set vi ← (ei1, . . . , eik) ∈ Z×k for i = 1, . . . , k + 1

apply Gaussian elimination over Zq to find integers c1, . . . , ck+1 ∈
{0, . . . , q − 1}, not all zero, such that
c1v1 + · · · + ck+1vk+1 ∈ qZ×k.

r ←
∑k+1
i=1 ciri, s←

∑k+1
i=1 cisi

if s ≡ 0 (mod q)
then output “failure”
else output −rs−1 mod q

Fig. 15.1. Algorithm SEDL

the expected number of attempts needed to produce a single relation is σ−1, and
so the expected number of attempts to produce k + 1 relations is (k + 1)σ−1.
In each attempt, we perform trial division using p1, . . . , pk, along with a few
other minor computations, leading to a total expected running time in stage 1 of
k2σ−1 · len(p)O(1). The running time in stage 2 is dominated by the Gaussian
elimination step, which takes time k3 · len(p)O(1). Thus, if Z is the total running
time of the algorithm, then we have

E[Z] ≤ (k2σ−1 + k3) · len(p)O(1). (15.3)

Let us assume for the moment that

y = exp[(log p)λ+o(1)] (15.4)

for some constant λ with 0 < λ < 1. Our final choice of y will indeed satisfy this
assumption. Consider the probability σ. We have

σ = Ψ(y, p − 1)/(p − 1) = Ψ(y, p)/(p − 1) ≥ Ψ(y, p)/p,

404 Subexponential-time discrete logarithms and factoring

where for the second equality we use the assumption that y < p, so p is not y-
smooth. With our assumption (15.4), we may apply Theorem 15.1 (with the given
value of y and x := p), obtaining

σ ≥ exp[(−1 + o(1))(log p/ log y) log log p].

By Chebyshev’s theorem (Theorem 5.1), we know that k = Θ(y/ log y), and so
log k = (1 + o(1)) log y. Moreover, assumption (15.4) implies that the factor
len(p)O(1) in (15.3) is of the form exp[o(min(log y, log p/ log y))], and so we have

E[Z] ≤ exp[(1 + o(1)) max{(log p/ log y) log log p + 2 log y, 3 log y}]. (15.5)

Let us find the value of y that minimizes the right-hand side of (15.5), ignoring
the “o(1)” terms. Let µ := log y, A := log p log log p, S1 := A/µ + 2µ, and
S2 := 3µ. We want to find µ that minimizes max{S1,S2}. Using a little calculus,
one sees that S1 is minimized at µ = (A/2)1/2. With this choice of µ, we have
S1 = (2

√
2)A1/2 and S2 = (3/

√
2)A1/2 < S1. Thus, choosing

y = exp[(1/
√

2)(log p log log p)1/2],

we obtain

E[Z] ≤ exp[(2
√

2 + o(1))(log p log log p)1/2].

That takes care of the first two questions, although strictly speaking, we have
only obtained an upper bound for the expected running time, and we have not
shown that the choice of y is actually optimal, but we shall nevertheless content
ourselves (for now) with these results. Finally, we deal with the third question, on
the probability that the algorithm outputs “failure.”

Lemma 15.2. The probability that Algorithm SEDL outputs “failure” is 1/q.

Proof. Let F be the event that the algorithm outputs “failure.” For i = 1, . . . , k+1,
we may view the final values assigned to ri, si, δi, and mi as random variables,
which we shall denote by these same names (to avoid additional notation). Simi-
larly, we may view s as a random variable.

Let m′1, . . . ,m′k+1 be arbitrary, fixed y-smooth numbers, and let B be the event
that m1 = m′1, . . . ,mk+1 = m′k+1. We shall show that P[F |B] = 1/q, and since this
holds for all relevant B, it follows by total probability that P[F] = 1/q.

For the rest of the argument, we focus on the conditional distribution given
B. With respect to this conditional distribution, the distribution of each random
variable (ri, si, δi) is (essentially) the uniform distribution on the set

Pi := {(r′, s′, δ′) ∈ Iq × Iq ×H : γr
′
αs
′
δ′ = [m′i]p},

where Iq := {0, . . . , q − 1}; also, the family of random variables {(ri, si, δi)}k+1
i=1

15.2 An algorithm for discrete logarithms 405

is mutually independent. It is easy to see that for i = 1, . . . , k + 1, and for each
s′ ∈ Iq, there exist unique values r′ ∈ Iq and δ′ ∈ H such that (r′, s′, δ′) ∈ Pi. From
this, it easily follows that each si is uniformly distributed over Iq, and the family
of random variables {si}k+1

i=1 is mutually independent. Also, the values c1, . . . , ck+1

computed by the algorithm are fixed (as they are determined by m′1, . . . ,m′k+1), and
since s = c1s1+· · ·+ck+1sk+1, and not all the ci’s are zero modulo q, it follows that
s mod q is uniformly distributed over Iq, and so is equal to zero with probability
1/q. 2

Let us summarize the above discussion in the following theorem.

Theorem 15.3. With the smoothness parameter set as

y := exp[(1/
√

2)(log p log log p)1/2],

the expected running time of Algorithm SEDL is at most

exp[(2
√

2 + o(1))(log p log log p)1/2].

The probability that Algorithm SEDL outputs “failure” is 1/q.

In the description and analysis of Algorithm SEDL, we have assumed that the
primes p1, . . . , pk were pre-computed. Of course, we can construct this list of
primes using, for example, the sieve of Eratosthenes (see §5.4), and the running
time of this pre-computation will be dominated by the running time of Algo-
rithm SEDL.

In the analysis of Algorithm SEDL, we relied crucially on the fact that in gener-
ating a relation, each candidate element γriαsiδi was uniformly distributed over Z∗p.
If we simply left out the δi’s, then the candidate element would be uniformly dis-
tributed over the subgroupG, and Theorem 15.1 simply would not apply. Although
the algorithm might anyway work as expected, we would not be able to prove this.

EXERCISE 15.1. Using the result of Exercise 14.19, show how to modify Algo-
rithm SEDL to work in the case where p − 1 = qem, e > 1, q - m, γ generates
the subgroup G of Z∗p of order qe, and α ∈ G. Your algorithm should compute
logγ α with roughly the same expected running time and success probability as
Algorithm SEDL.

EXERCISE 15.2. Using the algorithm of the previous exercise as a subroutine,
design and analyze an algorithm for the following problem. The input is p, q, γ, α,
where p is a prime, q is a prime dividing p − 1, γ generates the subgroup G of Z∗p
of order q, and α ∈ G; note that we may have q2 | (p − 1). The output is logγ α.
Your algorithm should always succeed in computing this discrete logarithm, and its

406 Subexponential-time discrete logarithms and factoring

expected running time should be bounded by a constant times the expected running
time of the algorithm of the previous exercise.

EXERCISE 15.3. Using the result of Exercise 14.20, show how to modify Algo-
rithm SEDL to solve the following problem: given a prime p, a generator γ for
Z∗p, and an element α ∈ Z∗p, compute logγ α. Your algorithm should work without
knowledge of the factorization of p−1; its expected running time should be roughly
the same as that of Algorithm SEDL, but its success probability may be lower. In
addition, explain how the success probability may be significantly increased at
almost no cost by collecting a few extra relations.

EXERCISE 15.4. Let n = pq, where p and q are distinct, large primes. Let e be a
prime, with e < n and e - (p − 1)(q − 1). Let x be a positive integer, with x < n.
Suppose you are given n (but not its factorization!) along with e and x. In addition,
you are given access to two “oracles,” which you may invoke as often as you like.

• The first oracle is a “challenge oracle”: each invocation of the oracle pro-
duces a “challenge” a ∈ {1, . . . , x}—distributed uniformly, and independ-
ent of all other challenges.

• The second oracle is a “solution oracle”: you invoke this oracle with the
index of a previous challenge oracle; if the corresponding challenge was a,
the solution oracle returns the eth root of a modulo n; that is, the solution
oracle returns b ∈ {1, . . . , n − 1} such that be ≡ a (mod n) — note that b
always exists and is uniquely determined.

Let us say that you “win” if you are able to compute the eth root modulo n of any
challenge, but without invoking the solution oracle with the corresponding index
of the challenge (otherwise, winning would be trivial, of course).

(a) Design a probabilistic algorithm that wins the above game, using an
expected number of

exp[(c + o(1))(log x log log x)1/2] · len(n)O(1)

steps, for some constant c, where a “step” is either a computation step or an
oracle invocation (either challenge or solution). Hint: Gaussian elimination
over the field Ze.

(b) Suppose invocations of the challenge oracle are “cheap,” while invocations
of the solution oracle are relatively “expensive.” How would you modify
your strategy in part (a)?

Exercise 15.4 has implications in cryptography. A popular way of implementing
a public-key primitive known as a “digital signature” works as follows: to digi-
tally sign a message M (which may be an arbitrarily long bit string), first apply

15.3 An algorithm for factoring integers 407

a “hash function” or “message digest” H to M , obtaining an integer a in some
fixed range {1, . . . , x}, and then compute the signature of M as the eth root b of
a modulo n. Anyone can verify that such a signature b is correct by checking that
be ≡ H (M) (mod n); however, it would appear to be difficult to “forge” a signature
without knowing the factorization of n. Indeed, one can prove the security of this
signature scheme by assuming that it is hard to compute the eth root of a random
number modulo n, and by making the heuristic assumption that H is a random
function (see §15.5). However, for this proof to work, the value of x must be close
to n; otherwise, if x is significantly smaller than n, as the result of this exercise,
one can break the signature scheme at a cost that is roughly the same as the cost of
factoring numbers around the size of x, rather than the size of n.

15.3 An algorithm for factoring integers
We now present a probabilistic, subexponential-time algorithm for factoring inte-
gers. The algorithm uses techniques very similar to those used in Algorithm SEDL
in §15.2.

Let n > 1 be the integer we want to factor. We make a few simplifying assump-
tions. First, we assume that n is odd — this is not a real restriction, since we can
always pull out any factors of 2 in a pre-processing step. Second, we assume that
n is not a perfect power, that is, not of the form ab for integers a > 1 and b > 1—
this is also not a real restriction, since we can always partially factor n using the
algorithm from Exercise 3.31 if n is a perfect power. Third, we assume that n is
not prime—this may be efficiently checked using, say, the Miller–Rabin test (see
§10.2). Fourth, we assume that n is not divisible by any primes up to a “smoothness
parameter” y—we can ensure this using trial division, and it will be clear that the
running time of this pre-computation is dominated by that of the algorithm itself.

With these assumptions, the prime factorization of n is of the form

n = q
f1
1 · · · q

fw
w ,

where w > 1, the qi’s are distinct, odd primes, each greater than y, and the fi’s are
positive integers.

The main goal of our factoring algorithm is to find a random square root of 1 in
Z∗n. Let

θ : Zn → Z
q
f1
1
× · · · × Zqfww

[a]n 7→ ([a]
q
f1
1

, . . . , [a]qfww)

be the ring isomorphism of the Chinese remainder theorem. The square roots of
1 in Z∗n are precisely those elements γ ∈ Z∗n such that θ(γ) = (±1, . . . ,±1). If
γ is a random square root of 1, then with probability 1 − 2−w+1 ≥ 1/2, we have

408 Subexponential-time discrete logarithms and factoring

θ(γ) = (γ1, . . . , γw), where the γi’s are neither all 1 nor all −1 (i.e., γ 6= ±1). If this
happens, then θ(γ − 1) = (γ1 − 1, . . . , γw − 1), and so we see that some, but not all,
of the values γi − 1 will be zero. The value of gcd(rep(γ − 1), n) is precisely the
product of the prime powers qfii such that γi − 1 = 0, and hence this gcd will yield
a non-trivial factorization of n, unless γ = ±1.

Let p1, . . . , pk be the primes up to the smoothness parameter y mentioned above.
Let πi := [pi]n ∈ Z∗n for i = 1, . . . , k.

We first describe a simplified version of the algorithm, after which we modify
the algorithm slightly to deal with a technical problem. Like Algorithm SEDL, this
algorithm proceeds in two stages. In the first stage, we find relations of the form

α2
i = π

ei1
1 · · ·π

eik
k , (15.6)

for i = 1, . . . , k + 1, where ei1, . . . , eik ∈ Z and αi ∈ Z∗n for each i.
We can obtain each such relation by randomized search, as follows: we select

αi ∈ Z∗n at random, square it, and try to factor mi := rep(α2
i) by trial division, trying

all the primes p1, . . . , pk up to y. If we are lucky, we obtain a factorization

mi = p
ei1
1 · · · p

eik
k ,

for some exponents ei1, . . . , eik, yielding the relation (15.6); if not, we just keep
trying.

For i = 1, . . . , k + 1, let vi := (ei1, . . . , eik) ∈ Z×k, and let vi denote the image
of vi in Z×k2 (i.e., vi := ([ei1]2, . . . , [eik]2)). Since Z×k2 is a vector space over
the field Z2 of dimension k, the family of vectors v1, . . . , vk+1 must be linearly
dependent. The second stage of the algorithm uses Gaussian elimination over Z2

to find a linear dependence among the vectors v1, . . . , vk+1, that is, to find integers
c1, . . . , ck+1 ∈ {0, 1}, not all zero, such that

(e1, . . . , ek) := c1v1 + · · · + ck+1vk+1 ∈ 2Z×k.

Raising each equation (15.6) to the corresponding power ci, and multiplying them
all together, we obtain

α2 = π
e1
1 · · ·π

ek
k ,

where

α :=
k+1
∏

i=1

α
ci
i .

Since each ei is even, we can compute

β := π
e1/2
1 · · ·πek/2

k ,

and we see that α2 = β2, and hence (α/β)2 = 1. Thus, γ := α/β is a square root

15.3 An algorithm for factoring integers 409

of 1 in Z∗n. A more careful analysis (see below) shows that in fact, γ is uniformly
distributed over all square roots of 1, and hence, with probability at least 1/2, if we
compute gcd(rep(γ − 1), n), we get a non-trivial factor of n.

That is the basic idea of the algorithm. There is, however, a technical problem.
Namely, in the method outlined above for generating a relation, we attempt to fac-
tor mi := rep(α2

i). Thus, the running time of the algorithm will depend in a crucial
way on the probability that a random square modulo n is y-smooth. Unfortunately
for us, Theorem 15.1 does not say anything about this situation — it only applies
to the situation where a number is chosen at random from an interval [1, x]. There
are (at least) three different ways to address this problem:

1. Ignore it, and just assume that the bounds in Theorem 15.1 apply to random
squares modulo n (taking x := n in the theorem).

2. Prove a version of Theorem 15.1 that applies to random squares modulo n.

3. Modify the factoring algorithm, so that Theorem 15.1 applies.

The first choice, while not unreasonable from a practical point of view, is not very
satisfying mathematically. It turns out that the second choice is indeed a viable
option (i.e., the theorem is true and is not so difficult to prove), but we opt for the
third choice, as it is somewhat easier to carry out, and illustrates a probabilistic
technique that is more generally useful.

So here is how we modify the basic algorithm. Instead of generating relations of
the form (15.6), we generate relations of the form

α2
i δ = π

ei1
1 · · ·π

eik
k , (15.7)

for i = 1, . . . , k + 2, where ei1, . . . , eik ∈ Z and αi ∈ Z∗n for each i, and δ ∈ Z∗n.
Note that the value δ is the same in all relations.

We generate these relations as follows. For the very first relation (i.e., i = 1),
we repeatedly choose α1 and δ in Z∗n at random, until rep(α2

1δ) is y-smooth. Then,
after having found the first relation, we find each subsequent relation (i.e., for
i > 1) by repeatedly choosing αi in Z∗n at random until rep(α2

i δ) is y-smooth,
where δ is the same value that was used in the first relation. Now, Theorem 15.1
will apply directly to determine the success probability of each attempt to generate
the first relation. When we have found this relation, the value α2

1δ will be uniformly
distributed over all y-smooth elements of Z∗n (i.e., elements whose integer repre-
sentations are y-smooth). Consider the various cosets of (Z∗n)2 in Z∗n. Intuitively,
it is much more likely that a random y-smooth element of Z∗n lies in a coset that
contains many y-smooth elements than in a coset with very few, and indeed, it is
reasonably likely that the fraction of y-smooth elements in the coset containing δ
is not much less than the overall fraction of y-smooth elements in Z∗n. Therefore,

410 Subexponential-time discrete logarithms and factoring

for i > 1, each attempt to find a relation should succeed with reasonably high
probability. This intuitive argument will be made rigorous in the analysis to follow.

The second stage is then modified as follows. For i = 1, . . . , k + 2, let vi :=
(ei1, . . . , eik, 1) ∈ Z×(k+1), and let vi denote the image of vi in Z×(k+1)

2 . Since
Z×(k+1)

2 is a vector space over the field Z2 of dimension k+1, the family of vectors
v1, . . . , vk+2 must be linearly dependent. Therefore, we use Gaussian elimination
over Z2 to find a linear dependence among the vectors v1, . . . , vk+2, that is, to find
integers c1, . . . , ck+2 ∈ {0, 1}, not all zero, such that

(e1, . . . , ek+1) := c1v1 + · · · + ck+2vk+2 ∈ 2Z×(k+1).

Raising each equation (15.7) to the corresponding power ci, and multiplying them
all together, we obtain

α2δek+1 = π
e1
1 · · ·π

ek
k ,

where

α :=
k+2
∏

i=1

α
ci
i .

Since each ei is even, we can compute

β := π
e1/2
1 · · ·πek/2

k δ−ek+1/2,

so that α2 = β2 and γ := α/β is a square root of 1 in Z∗n.
The entire algorithm, called Algorithm SEF, is presented in Fig. 15.2.
Now the analysis. From the discussion above, it is clear that Algorithm SEF

either outputs “failure,” or outputs a non-trivial factor of n. So we have the same
three questions to answer as we did in the analysis of Algorithm SEDL:

1. What is the expected running time of Algorithm SEF?

2. How should the smoothness parameter y be chosen so as to minimize the
expected running time?

3. What is the probability that Algorithm SEF outputs “failure”?

To answer the first question, let σ denote the probability that (the canonical
representative of) a random element of Z∗n is y-smooth. For i = 1, . . . , k + 2, let
Li denote the number of iterations of the inner loop in the ith iteration of the main
loop in stage 1; that is, Li is the number of attempts made in finding the ith relation.

Lemma 15.4. For i = 1, . . . , k + 2, we have E[Li] ≤ σ−1.

Proof. We first compute E[L1]. As δ is chosen uniformly from Z∗n and independ-
ent of α1, at each attempt to find a relation, α2

1δ is uniformly distributed over Z∗n,

15.3 An algorithm for factoring integers 411

i← 0
repeat

i← i + 1
repeat

choose αi ∈ Z∗n at random
if i = 1 then choose δ ∈ Z∗n at random
mi ← rep(α2

i δ)
test if mi is y-smooth (trial division)

until mi = p
ei1
1 · · · p

eik
k for some integers ei1, . . . , eik

until i = k + 2

set vi ← (ei1, . . . , eik, 1) ∈ Z×(k+1) for i = 1, . . . , k + 2

apply Gaussian elimination over Z2 to find integers c1, . . . , ck+2 ∈
{0, 1}, not all zero, such that
(e1, . . . , ek+1) := c1v1 + · · · + ck+2vk+2 ∈ 2Z×(k+1).

α ←
∏k+2

i=1 α
ci
i , β ← π

e1/2
1 · · ·πek/2

k δ−ek+1/2, γ ← α/β

if γ = ±1
then output “failure”
else output gcd(rep(γ − 1), n)

Fig. 15.2. Algorithm SEF

and hence the probability that the attempt succeeds is precisely σ. This means
E[L1] = σ−1.

We next compute E[Li] for i > 1. To this end, let us denote the cosets of (Z∗n)2

by Z∗n as C1, . . . ,Ct. As it happens, t = 2w, but this fact plays no role in the
analysis. For j = 1, . . . , t, let σj denote the probability that a random element of
Cj is y-smooth, and let τj denote the probability that the final value of δ belongs to
Cj.

We claim that for j = 1, . . . , t, we have τj = σjσ
−1t−1. To see this, note that each

coset Cj has the same number of elements, namely, |Z∗n|t−1, and so the number of
y-smooth elements in Cj is equal to σj|Z∗n|t−1. Moreover, the final value of α2

1δ

is equally likely to be any one of the y-smooth numbers in Z∗n, of which there are
σ|Z∗n|, and hence

τj =
σj|Z∗n|t−1

σ|Z∗n|
= σjσ

−1t−1,

which proves the claim.

412 Subexponential-time discrete logarithms and factoring

Now, for a fixed value of δ and a random choice of αi ∈ Z∗n, one sees that α2
i δ

is uniformly distributed over the coset containing δ. Therefore, for j = 1, . . . , t, if
τj > 0, we have

E[Li | δ ∈ Cj] = σ−1
j .

Summing over all j = 1, . . . , t with τj > 0, it follows that

E[Li] =
∑

τj>0

E[Li | δ ∈ Cj] · P[δ ∈ Cj]

=
∑

τj>0

σ−1
j · τj =

∑

τj>0

σ−1
j · σjσ

−1t−1 ≤ σ−1,

which proves the lemma. 2

So in stage 1, the expected number of attempts made in generating a single rela-
tion is σ−1, each such attempt takes time k·len(n)O(1), and we have to generate k+2
relations, leading to a total expected running time in stage 1 of σ−1k2 · len(n)O(1).
Stage 2 is dominated by the cost of performing Gaussian elimination, which takes
time k3 · len(n)O(1). Thus, if Z is the total running time of the algorithm, we have

E[Z] ≤ (σ−1k2 + k3) · len(n)O(1).

By our assumption that n is not divisible by any primes up to y, all y-smooth
integers up to n − 1 are in fact relatively prime to n. Therefore, the number of
y-smooth elements of Z∗n is equal to Ψ(y, n− 1), and since n itself is not y-smooth,
this is equal to Ψ(y, n). From this, it follows that

σ = Ψ(y, n)/|Z∗n| ≥ Ψ(y, n)/n.

The rest of the running time analysis is essentially the same as in the analysis
of Algorithm SEDL; that is, assuming y = exp[(log n)λ+o(1)] for some constant
0 < λ < 1, we obtain

E[Z] ≤ exp[(1 + o(1)) max{(log n/ log y) log log n + 2 log y, 3 log y}]. (15.8)

Setting y = exp[(1/
√

2)(log n log log n)1/2], we obtain

E[Z] ≤ exp[(2
√

2 + o(1))(log n log log n)1/2].

That basically takes care of the first two questions. As for the third, we have:

Lemma 15.5. Algorithm SEF outputs “failure” with probability 2−w+1 ≤ 1/2.

Proof. Let F be the event that the algorithm outputs “failure.” We may view
the final values assigned to δ and α1, . . . , αk+2 as random variables, which we
shall denote by these same names. Let δ′ ∈ Z∗n and α′1, . . . , α′k+2 ∈ (Z∗n)2 be

15.3 An algorithm for factoring integers 413

arbitrary, fixed values such that rep(α′iδ
′) is y-smooth for i = 1, . . . , k + 2. Let

B be the event that δ = δ′ and α2
i = α′i for i = 1, . . . , k + 2. We shall show

that P[F | B] = 2−w+1, and since this holds for all relevant B, it follows by total
probability that P[F] = 2−w+1.

For the rest of the argument, we focus on the conditional distribution given
B. With respect to this conditional distribution, the distribution of each random
variable αi is (essentially) the uniform distribution on ρ−1({α′i}), where ρ is the
squaring map on Z∗n. Moreover, the family of random variables {αi}k+2

i=1 is mutually
independent. Also, the values β and c1, . . . , ck+2 computed by the algorithm are
fixed. It follows (see Exercise 8.14) that the distribution of α is (essentially) the
uniform distribution on ρ−1({β2}), and hence γ := α/β is a random square root of
1 in Z∗n. Thus, γ = ±1 with probability 2−w+1. 2

Let us summarize the above discussion in the following theorem.

Theorem 15.6. With the smoothness parameter set as

y := exp[(1/
√

2)(log n log log n)1/2],

the expected running time of Algorithm SEF is at most

exp[(2
√

2 + o(1))(log n log log n)1/2].

The probability that Algorithm SEF outputs “failure” is at most 1/2.

EXERCISE 15.5. It is perhaps a bit depressing that after all that work, Algo-
rithm SEF only succeeds (in the worst case) with probability 1/2. Of course, to
reduce the failure probability, we can simply repeat the entire computation—with
` repetitions, the failure probability drops to 2−`. However, there is a better way to
reduce the failure probability. Suppose that in stage 1, instead of collecting k + 2
relations, we collect k + 1 + ` relations, where ` ≥ 1 is an integer parameter.

(a) Show that in stage 2, we can use Gaussian elimination over Z2 to find inte-
ger vectors

c(j) = (c(j)
1 , . . . , c(j)

k+1+`) ∈ {0, 1}×(k+1+`) (j = 1, . . . , `)

such that

– over the field Z2, the images of the vectors c(1), . . . , c(`) in Z×(k+1+`)
2

form a linearly independent family of vectors, and

– for j = 1, . . . , `, we have

c
(j)
1 v1 + · · · + c

(j)
k+1+`vk+1+` ∈ 2Z×(k+2).

414 Subexponential-time discrete logarithms and factoring

(b) Show that given vectors c(1), . . . , c(`) as in part (a), if for j = 1, . . . , `, we
set

(e(j)
1 , . . . , e(j)

k+1) ← c
(j)
1 v1 + · · · + c

(j)
k+1+`vk+1+`,

α(j) ←
k+1+`
∏

i=1

α
c

(j)
i

i , β(j) ← π
e

(j)
1 /2

1 · · ·π
e

(j)
k /2
k δ−e

(j)
k+1/2, γ (j) ← α(j)/β(j),

then the family of random variables γ (1), . . . , γ (`) is mutually independent,
with each γ (j) uniformly distributed over the set of all square roots of 1 in
Z∗n, and hence at least one of gcd(rep(γ (j) − 1), n) splits n with probability
at least 1 − 2−`.

So, for example, if we set ` = 20, then the failure probability is reduced to less
than one in a million, while the increase in running time over Algorithm SEF will
hardly be noticeable.

15.4 Practical improvements
Our presentation and analysis of algorithms for discrete logarithms and factoring
were geared towards simplicity and mathematical rigor. However, if one really
wants to compute discrete logarithms or factor numbers, then a number of impor-
tant practical improvements should be considered. In this section, we briefly sketch
some of these improvements, focusing our attention on algorithms for factoring
numbers (although some of the techniques apply to discrete logarithms as well).

15.4.1 Better smoothness density estimates
From an algorithmic point of view, the simplest way to improve the running times
of both Algorithms SEDL and SEF is to use a more accurate smoothness density
estimate, which dictates a different choice of the smoothness bound y in those
algorithms, speeding them up significantly. While our Theorem 15.1 is a valid
lower bound on the density of smooth numbers, it is not “tight,” in the sense that
the actual density of smooth numbers is somewhat higher. We quote from the
literature the following result:

Theorem 15.7. Let y be a function of x such that for some ε > 0, we have

y = Ω((log x)1+ε) and u :=
log x
log y

→ ∞

as x→ ∞. Then

Ψ(y, x) = x · exp[(−1 + o(1))u log u].

15.4 Practical improvements 415

Proof. See §15.5. 2

Let us apply this result to the analysis of Algorithm SEF. Assume that

y = exp[(log n)1/2+o(1)].

Our choice of y will in fact be of this form. With this assumption, we have
log log y = (1/2 + o(1)) log log n, and using Theorem 15.7, we can improve the
inequality (15.8), obtaining instead (as the reader may verify)

E[Z] ≤ exp[(1 + o(1)) max{1
2 (log n/ log y) log log n + 2 log y, 3 log y}].

From this, if we set

y := exp[1
2 (log n log log n)1/2)],

we obtain

E[Z] ≤ exp[(2 + o(1))(log n log log n)1/2].

An analogous improvement can be obtained for Algorithm SEDL.
Although this improvement only reduces the constant 2

√
2 ≈ 2.828 to 2, the

constant is in the exponent, and so this improvement is not to be scoffed at!

15.4.2 The quadratic sieve algorithm
We now describe a practical improvement to Algorithm SEF. This algorithm,
known as the quadratic sieve, is faster in practice than Algorithm SEF; however,
its analysis is somewhat heuristic.

First, let us return to the simplified version of Algorithm SEF, where we collect
relations of the form (15.6). Furthermore, instead of choosing the values αi at
random, we will choose them in a special way, as we now describe. Let

ñ := b
√
nc,

and define the polynomial

F := (X + ñ)2 − n ∈ Z[X].

In addition to the usual “smoothness parameter” y, we need a “sieving parameter”
z, whose choice will be discussed below. We shall assume that both y and z are
of the form exp[(log n)1/2+o(1)], and our ultimate choices of y and z will indeed
satisfy this assumption.

For all s = 1, 2, . . . , bzc, we shall determine which values of s are “good,” in
the sense that the corresponding value F (s) is y-smooth. For each good s, since
we have F (s) ≡ (s + ñ)2 (mod n), we obtain one relation of the form (15.6),
with αi := [s + ñ]n. If we find at least k + 1 good values of s, then we can apply

416 Subexponential-time discrete logarithms and factoring

Gaussian elimination as usual to find a square root γ of 1 in Z∗n. Hopefully, we will
have γ 6= ±1, allowing us to split n.

Observe that for 1 ≤ s ≤ z, we have

1 ≤ F (s) ≤ z2 + 2zn1/2 ≤ n1/2+o(1).

Now, although the values F (s) are not at all random, we might expect heuristically
that the number of good s up to z is roughly equal to σ̂z, where σ̂ is the probability
that a random integer in the interval [1, n1/2] is y-smooth, and by Theorem 15.7,
we have

σ̂ = exp[(−1
4 + o(1))(log n/ log y) log log n].

If our heuristics are valid, this already yields an improvement over Algorithm SEF,
since now we are looking for y-smooth numbers near n1/2, which are much more
common than y-smooth numbers near n. But there is another improvement possi-
ble; namely, instead of testing each individual number F (s) for smoothness using
trial division, we can test them all at once using the following “sieving procedure.”

The sieving procedure works as follows. First, we create an array v[1 . . . bzc],
and initialize v[s] to F (s), for 1 ≤ s ≤ z. Then, for each prime p up to y, we do
the following:

1. Compute the roots of the polynomial F modulo p.

This can be done quite efficiently, as follows. For p = 2, F has exactly
one root modulo p, which is determined by the parity of ñ. For p > 2,
we may use the familiar quadratic formula together with an algorithm for
computing square roots modulo p, as discussed in Exercise 12.7. A quick
calculation shows that the discriminant of F is 4n, and thus, F has a root
modulo p if and only if n is a quadratic residue modulo p, in which case it
will have two roots (under our usual assumptions, we cannot have p | n).

2. Assume that F has vp distinct roots modulo p lying in the interval [1, p];
call them r1, . . . , rvp .

Note that vp = 1 for p = 2 and vp ∈ {0, 2} for p > 2. Also note that
F (s) ≡ 0 (mod p) if and only if s ≡ ri (mod p) for some i = 1, . . . , vp.

For i = 1, . . . , vp, do the following:

s← ri
while s ≤ z do

repeat v[s]← v[s]/p until p - v[s]
s ← s + p

At the end of this sieving procedure, the good values of s may be identified as

15.4 Practical improvements 417

precisely those such that v[s] = 1. The running time of this sieving procedure is at
most len(n)O(1) times

∑

p≤y

z

p
= z
∑

p≤y

1
p
= O(z log log y) = z1+o(1).

Here, we have made use of Theorem 5.10, although this is not really necessary—
for our purposes, the bound

∑

p≤y 1/p = O(log y) would suffice. Note that this
sieving procedure is a factor of k1+o(1) faster than the method for finding smooth
numbers based on trial division. With just a little extra book-keeping, we can not
only identify the good values of s but also compute the factorization of F (s) into
primes, at essentially no extra cost.

Now, let us put together all the pieces. We have to choose z just large enough
so as to find at least k + 1 good values of s up to z. So we should choose z so
that z ≈ k/σ̂— in practice, we could choose an initial estimate for z, and if this
choice of z does not yield enough relations, we could keep doubling z until we do
get enough relations. Assuming that z ≈ k/σ̂, the cost of sieving is (k/σ̂)1+o(1), or

exp[(1 + o(1))(1
4 (log n/ log y) log log n + log y)].

The cost of Gaussian elimination is still O(k3), or

exp[(3 + o(1)) log y].

Thus, the total running time is bounded by

exp[(1 + o(1)) max{1
4 (log n/ log y) log log n + log y, 3 log y}].

Let µ := log y, A := (1/4) log n log log n, S1 := A/µ + µ and S2 := 3µ, and let us
find the value of µ that minimizes max{S1,S2}. Using a little calculus, one finds
that S1 is minimized at µ = A1/2. For this value of µ, we have S1 = 2A1/2 and
S2 = 3A1/2 > S1, and so this choice of µ is a bit larger than optimal. For µ < A1/2,
S1 is decreasing (as a function of µ), while S2 is always increasing. It follows that
the optimal value of µ is obtained by setting

A/µ + µ = 3µ,

and solving for µ. This yields µ = (A/2)1/2. So setting

y := exp[(1/2
√

2)(log n log log n)1/2],

the total running time of the quadratic sieve factoring algorithm is bounded by

exp[(3/2
√

2 + o(1))(log n log log n)1/2].

Thus, we have reduced the constant in the exponent from 2 (for Algorithm SEF
with the more accurate smoothness density estimates) to 3/2

√
2 ≈ 1.061.

418 Subexponential-time discrete logarithms and factoring

We mention one final improvement. The matrix to which we apply Gaussian
elimination in stage 2 is “sparse”; indeed, since any integer less than n hasO(log n)
prime factors, the total number of non-zero entries in the matrix is k1+o(1). There
are special algorithms for working with such sparse matrices, which allow us to
perform stage 2 of the factoring algorithm in time k2+o(1), or

exp[(2 + o(1)) log y].

Setting

y := exp[1
2 (log n log log n)1/2],

the total running time is bounded by

exp[(1 + o(1))(log n log log n)1/2].

Thus, this improvement reduces the constant in the exponent from 3/2
√

2 ≈ 1.061
to 1. Moreover, the special algorithms designed to work with sparse matrices typ-
ically use much less space than ordinary Gaussian elimination (even if the input
to Gaussian elimination is sparse, the intermediate matrices will not be). We shall
discuss in detail later, in §18.4, one such algorithm for solving sparse systems of
linear equations.

The quadratic sieve may fail to factor n, for one of two reasons: first, it may
fail to find k + 1 relations; second, it may find these relations, but in stage 2, it
finds only a trivial square root of 1. There is no rigorous theory to say why the
algorithm should not fail for one of these two reasons, but experience shows that
the algorithm does indeed work as expected.

15.5 Notes
Many of the algorithmic ideas in this chapter were first developed for the problem
of factoring integers, and then later adapted to the discrete logarithm problem.
The first (heuristic) subexponential-time algorithm for factoring integers, called
the continued fraction method (not discussed here), was introduced by Lehmer
and Powers [59], and later refined and implemented by Morrison and Brillhart
[70]. The first rigorously analyzed subexponential-time algorithm for factoring
integers was introduced by Dixon [35]. Algorithm SEF is a variation of Dixon’s
algorithm, which works the same way as Algorithm SEF, except that it generates
relations of the form (15.6) directly (and indeed, it is possible to prove a variant
of Theorem 15.1, and for that matter, Theorem 15.7, for random squares modulo
n). Algorithm SEF is based on an idea suggested by Rackoff (personal communi-
cation).

Theorem 15.7 was proved by Canfield, Erdős, and Pomerance [23].

15.5 Notes 419

The quadratic sieve was introduced by Pomerance [78]. Recall that the quadratic
sieve has a heuristic running time of

exp[(1 + o(1))(log n log log n)1/2].

This running time bound can also be achieved rigorously by a result of Lenstra
and Pomerance [61], and to date, this is the best rigorous running time bound for
factoring algorithms. We should stress, however, that most practitioners in this
field are not so much interested in rigorous running time analyses as they are in
actually factoring integers, and, for such purposes, heuristic running time estimates
are quite acceptable. Indeed, the quadratic sieve is much more practical than the
algorithm in [61], which is mainly of theoretical interest.

There are two other factoring algorithms not discussed here, but that should
anyway at least be mentioned. The first is the elliptic curve method, introduced
by Lenstra [60]. Unlike all of the other known subexponential-time algorithms, the
running time of this algorithm is sensitive to the sizes of the factors of n; in partic-
ular, if p is the smallest prime dividing n, the algorithm will find p (heuristically)
in expected time

exp[(
√

2 + o(1))(log p log log p)1/2] · len(n)O(1).

This algorithm is quite practical, and is the method of choice when it is known
(or suspected) that n has some small factors. It also has the advantage that it uses
only polynomial space (unlike all of the other known subexponential-time factoring
algorithms).

The second is the number field sieve, the basic idea of which was introduced by
Pollard [77], and later generalized and refined by Buhler, Lenstra, and Pomerance
[21], as well as by others. The number field sieve will split n (heuristically) in
expected time

exp[(c + o(1))(log n)1/3(log log n)2/3],

where c is a constant (currently, the smallest value of c is 1.902, a result due to
Coppersmith [27]). The number field sieve is currently the asymptotically fastest
known factoring algorithm (at least, heuristically), and it is also practical, having
been used to set the latest factoring record — the factorization of a 200-decimal-
digit integer that is the product of two primes of about the same size. See the web
page www.crypto-world.com/FactorRecords.html for more details (as well
as for announcements of new records).

As for subexponential-time algorithms for discrete logarithms, Adleman [1]
adapted the ideas used for factoring to the discrete logarithm problem, although
it seems that some of the basic ideas were known much earlier. Algorithm SEDL
is a variation on this algorithm, and the basic technique is usually referred to as the

http://www.crypto-world.com/FactorRecords.html

420 Subexponential-time discrete logarithms and factoring

index calculus method. The basic idea of the number field sieve was adapted to the
discrete logarithm problem by Gordon [42]; see also Adleman [2] and Schirokauer,
Weber, and Denny [84].

For many more details and references for subexponential-time algorithms for
factoring and discrete logarithms, see Chapter 6 of Crandall and Pomerance [30].
Also, see the web page www.crypto-world.com/FactorWorld.html for links
to research papers and implementation reports.

For more details regarding the security of signature schemes, as discussed fol-
lowing Exercise 15.4, see the paper by Bellare and Rogaway [13].

Last, but not least, we should mention the fact that there are in fact polynomial-
time algorithms for factoring and for computing discrete logarithms; however,
these algorithms require special hardware, namely, a quantum computer. Shor
[92, 93] showed that these problems could be solved in polynomial time on such a
device; however, at the present time, it is unclear when and if such machines will
ever be built. Much, indeed most, of modern-day cryptography will crumble if this
happens, or if efficient “classical” algorithms for these problems are discovered
(which is still a real possibility).

http://www.crypto-world.com/FactorWorld.html

